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Sonar Detection in an Uncertain Environment

OBJECTIVE: To achieve rapid characterization of sonar detection performance when

both the ocean environment and the noise field directionality are uncertain.

BACKGROUND:

When both the signal wavefront and noise covariance matrix are known a priori, the
classical sonar equation bounds detection performance based on analytic PDF’s.

When both the ocean environment and noise covariance are uncertain, detection
statistics used to predict performance in a known environment are not appropriate.

Monte Carlo methods can be used to predict detection performance by randomizing
over ocean parameters and noise covariance uncertainty but this is computationally
intensive and gives little insight into the cause of performance degradation.

In this project, recent analytic results for the performance of Bayesian and adaptive
CFAR detectors have been applied to achieve rapid sonar performance prediction
in an uncertain ocean environment.
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Detection Performance Characterization

Detection performance is characterized by the receiver operating characteristic (ROC) as
a function of output SNR, time-bandwidth product, noise training data, and degree of

signal wavefront uncertainty.
Example PD vs. SNR for PFA=0.1

The sonar equation summarizes the ROC as

the output SNR (i.e. detection threshold, 1 '

DT) needed to achieve a specific probability » """"""" """"""" """"""" )

of detection (PD) and false alarm (PFA). 08 """""" 7

A more complete description is given by PD z; ______________ ______________ _____________ )

vs. SNR for fixed PFA which, in principle, z

can be mapped to PD vs. range and bearing. o2 """""" )
D e mmm e -

Accurate performance prediction starts with o _____________ ______________ _____________ )

using the PD vs. SNR curves appropriate |

when the ocean environment is uncertain. A / """""" |
D'1-5 Dl 5| 1:] 1|5 20

SNR [dE]

What are the right curves when
the signal wavefront and
noise covariance are uncertain?
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Adaptive CFAR Detection in an Uncertain Ocean

In an uncertain waveguide, the M-sensor passive detection problem is given by:

H : x,=n versus H,: x =sU(8,)a+n,

o]

where [U(8,)],, = g(z,,)e am*"*"% Ja(r,,z,)], = g(z,)e™ ", s, are unknown
amplitudes, 6,,r,,z, are source bearing, range, depth, and y is array tilt.

We use E(Uaa”U")=HAH" to define a reduced-dimensional signal subspace
whose rank p increases with environmental uncertainty.

Adaptive detection assumes a set of i.i.d “training vectors” are available to
estimate the unknown Gaussian noise covariance, R, = E(n.n)

For adaptive detection in an uncertain ocean, the CFAR generalized likelihood
ratio test (GLRT) is given by:

H -1 Hp-1\-11yH -1
X, R” H(H R,7 H) H F\’,7 X,

A(x,) = =
(%) K+x/Rx,

where R = %fonx: estimated from K "signal-free" training data snapshots.
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Analytic Probability of Detection vs. Output SNR

If the signal wavefront and noise covariance are known exactly, the likelihood
ratio test (LRT) detection statistic is non-central Chi-square distributed with PD:

PD(r) = IjX[zz,zﬁNR](X)dX

Setting the level T to achieve a specified PFA, this equation can be numerically
solved to find the SNR =|s| a"U”R'Ua associated with a specified PD.

For an uncertain signal wavefront and noise covariance matrix, the statistics of
the optimal adaptive CFAR GLRT have been derived by (Kraut et.al. 2001) with:

PD(T) = J‘:’ J: F[zm,me—Mﬂ),zBNRm](Xp(b)dbdx with p(b) U IB[K—M+,D+1,M—P]

Now PD also depends on the ocean uncertainty through the signal subspace
dimension, p, the number of training snapshots available to estimate the noise
field, K, and the number of sensors in the array, M.
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Bearing fram M

Horizontal Array Data from SWELLEX-96 Event S5

The SWELLEX-96 dataset (courtesy MPL/SIO) was used to validate analytic PDF’s and
detection performance prediction.

Narrowband data from the M=27 sensor, 240-meter long, non-uniformly spaced
horizontal line array North was compared with detection performance predictions for the
S5 event. Bearing-time record for 109 Hz signal (right) and noise frequencies (left).
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Detection Statistics Over Entire S5 Event Track

*  Comparison of analytic PDF under HO (noise only) and H1 (signal+noise) versus
SWELLEX-96 data at 136 Hz for p=4 and K=300 (right figures) using estimated
distribution of SNR’s (left figure) over entire 50 minute track.

* Note good agreement between observed and predicted PDF’s for this level of signal
wavefront uncertainty.

Estimated PDF of S5 SNR over Track at 136 Hz
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PD

Event S5 Detection with Signal Wavefront Uncertainty

Probability of detection versus SNR for the adaptive GLRT detector for real S5 M=27
HLA North event data versus analytic prediction with increasing signal wavefront
uncertainty (i.e. subspace rank p). Snapshot support K=300 (left) and K=32 (right).

Good agreement achieved between theory and data for uncertain wavefront (p=4) model
(red curves). Note mismatch for p=1 prediction versus real data when plane-wave
beamforming assumed which may represent prediction error of current practice.
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PD

Event S5 Detection with Limited Noise Training Data

Probability of detection versus SNR for the adaptive GLRT detector for real S5 M=27
HLA North event data versus analytic prediction with decreasing training data (i.e.
snapshots K). Signal wavefront uncertaint: p=4 (left) and plane-wave p=1 (right).

Good agreement achieved between theory and data for uncertain wavefront (p=4) model
(left) with mismatch evident when p=1 plane-wave modeling assumed (right). Note
signal contamination in noise training data results in PD reduction at high SNR’s.

PD vs. SNR for p=4 over 4 tones

PD vs. SNR for p=1 over 4 tones
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Summary and Future Work

When the signal wavefront and noise field is uncertain, analytic PDF’s for the
optimum adaptive matched-subspace detector (MSD) can be rapidly computed as a
function of SNR, signal wavefront rank, and number of training data snapshots.

The analytic PDF of the adaptive MSD agrees with S5 HLA North data when an
uncertain wavefront is assumed and the number of noise snapshots is large.

Measured PD vs. SNR agrees with analytic predictions when the signal wavefront is
assumed uncertain and the number of noise snapshots is large.

Measured PD vs. SNR agrees with analytic predictions at moderate SNR’s when the
signal wavefront is assumed uncertain for different number of training snapshots.

At higher SNR’s, signal contamination of the noise training data can cause the
measured PD to be notably less than analytical prediction when the training data
limited.

Future work will include validation of detection performance predictions with the
HLA for assumed known signal wavefronts using MFP techniques.

Evaluation of theory and prediction in the presence of interference and
environmental uncertainty is planned using the SWELLEX-96 S59 event data.
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Incorporating Environmental Uncertainty Into Bayesian
Sonar Detection Performance Prediction

Detection performance prediction
ROC (probability of detection vs
probability of false alarm)

Environmental uncertainty
*Uncertain channel parameters
*Water depth, sound speed profile, etc

*Unknown signal source position S

*Unknown interference source position S,
Probability density functions p({), p(S,), and p(S,)
capture uncertainties in the environmental
parameters
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From Environmental Uncertainty
to Wave Front Uncertainty

H, r=\SNRW.,S)as@,S,)+n,, n =Y _JINR (@,S)bf,(@.S,)+n,
HO r:nl’ QNN(Oal)abNN(Oal)anONN(OslN)

« Environmental uncertainty characterized by the probability density functions
Y~ pW),S, ~ p(S,), S, ~ p(Sy)

«  Uncertain signal wave front  s(y,S,) =H,S,)/|[H¥,S,)

* Ocean transfer function sampled at an N sensor array  H(y, S.)

* Signal Matrix: matrix of signal wave fronts due to environmental uncertainty

D:[Spsza"SL] :[S((LP,Ss)l),S((LlJ,Ss)z),..S((LP,SS)L)]

2
» Total signal-to-noise ratio at receivers  SNR(,S,) = g‘; H(y,S )" H(,S.)

n
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From Wave Front Uncertainty to Bayesian Sonar
Performance Prediction

* Discrete likelihood ratio: Monte Carlo integration over uncertainty

1 SNR . ’

1 L
A(r) =—)> A, A= ex
(r) LZ:Z:1 " 1+ SNR, p( 1+ SNR,

H
res,

)

SNR, = SNR((W, S.),)
* Detection performance: Monte Carlo over data to get p(A|H,) and p(A|H,)

PD:j;dﬂp(ﬂ|H1) PF:j;dﬂp(ﬂ|H0)

*Disadvantage of Monte Carlo performance evaluation methods
 Lack of insight into fundamental parameters
e Computationally intensive

» Motivates developing analytical Bayesian sonar performance predictions
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Analytical Bayesian Sonar Performance Prediction

Problem Detector statistic ROC performance
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SWellEx-96 Event S5 Environmental Model
5/10/96 23:15-5/11/96 00:30 GMT

1522 m/s
216.5 m
21 elements
VLA
1488 m/s !
Density 1.76 g/cm3 1572 m/s |
Attenuation 0.2dB/KmHz 23.5m
1593m/s v
o — — Density 2.06 g/cm3 1881m/
km Attenuation 0.06dB/KmHz
Courtesy of MPL/SIO
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Source Track SWellEx-96 Event S5
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— Used for replica field computation in detection problems
Estimated using Bartlett processor with nominal environmental
parameters, 109Hz data
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Detection Performance Prediction
An Example: SWellEx-96 Event S5 Environment

— Matched

— Bayesian

— 1/( SNR +1)
PD - PF

SNR=0H(Y,S,)" HW,S,)/ 0,

PD =1- (1 _ PF)(R—I)/R (1 _ (1 _ (1 _ PF)I/R)I/(SNR +1))
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SNR Estimation
Experimental Results (SWellEx-96 Event S5 )
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+ SNR estimation = channels*(||r,|*- |[t,|*)/ |l lI*
+ |[|r,||?: r; data energy in each frame
Iro|]? : T, data energy in each frame
H,: r, =r109+(0.88-1) 199, H,: r,= 0.88 199
Frame: 21 channels x 900snapshots (5mins), updated per 100snapshots
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Detection Performance Prediction
Experimental Results (SWellEx-96 Event S5 ) : Diffuse Noise
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Detection Performance Prediction
Experimental Results (SWellEx-96 Event S5 ) :
Wave Front Uncertainty Due to Source Motion

O1r

SNR at receivers (dB) Source range of one particular track ((km)
<+ Matched-ocean detector — Analytical performance prediction
A= =R
+ Bayesian detector — Analytical performance prediction
M) = %Z; A PD =1- (1 _ Bv )(R—l)/R (1 _ (1 _ (1 _ PF )I/R)l/(SNR +1))
I SNR [r'"s,|

)
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Summary and Future Work

Derived fast, analytical methods for characterizing the performance of optimum
Bayesian and adaptive CFAR detectors.

Derived signal covariance matrix rank as an efficient measure of ocean environmental
uncertainty for Bayesian detection performance prediction.

Evaluated expected detection loss due to ocean environmental uncertainty, as a function
of SNR and signal covariance matrix rank, for vertical and horizontal arrays in
representative environments.

Evaluated expected detection loss due to limited noise covariance training data, in the
presence of signal wavefront uncertainty, for adaptive CFAR detectors.

Demonstrated good agreement between analytical detection performance predictions
and the performance of optimal detectors, matched to the degree of environmental
uncertainty, using SWELLEX-96 S5 event data.

Future work will include the comparison of detection performance predictions in the
presence of interference and environmental uncertainty using the SWELLEX-96 S59
event data.

Evaluation of comparative performance prediction accuracy using horizontal versus
vertical array configurations in an uncertain environment are also planned.
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